Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects.

Identifieur interne : 000216 ( Main/Exploration ); précédent : 000215; suivant : 000217

Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects.

Auteurs : Guangshan Zhao [République populaire de Chine] ; Ximing Wu [République populaire de Chine] ; Pingping Chen [République populaire de Chine] ; Lingyun Zhang [République populaire de Chine] ; Chung S. Yang [États-Unis] ; Jinsong Zhang [République populaire de Chine]

Source :

RBID : pubmed:30056082

Descripteurs français

English descriptors

Abstract

We have previously demonstrated that selenium nanoparticles (SeNPs) administered via oral route possess similar capacities of increasing selenoenzyme activities as the extensively examined sodium selenite, selenomethionine and methylselenocysteine, and yet display the lowest toxicity among these selenium compounds in mouse models. However, the low toxicity of SeNPs found in mammalian systems would lead to the interpretation that the punctate distribution of elemental selenium found in cultured cancer cells subjected to selenite treatment that triggers marked cytotoxicity represents a detoxifying mechanism. The present study found that SeNPs could be reduced by the thioredoxin- or glutaredoxin-coupled glutathione system to generate ROS. Importantly, ROS production by SeNPs in these systems was more efficient than by selenite, which has been recognized as the most redox-active selenium compound for ROS production. This is because multiple steps of reduction from selenite to selenide anion are required; whereas only a single step reduction from the elemental selenium atom to selenide anion is needed to trigger redox cycling with oxygen to produce ROS. We thus speculated that accumulation of SeNPs in cancer cells would result in a strong therapeutic effect, rather than serves a detoxification function. Indeed, we showed herein that preformed SeNPs generated a potent therapeutic effect in a mouse model due to rapid, massive and selective accumulation of SeNPs in cancer cells. Overall, for the first time, we demonstrate that SeNPs have a stronger pro-oxidant property than selenite and hyper-accumulation of SeNPs in cancer cells can generate potent therapeutic effects.

DOI: 10.1016/j.freeradbiomed.2018.07.017
PubMed: 30056082


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects.</title>
<author>
<name sortKey="Zhao, Guangshan" sort="Zhao, Guangshan" uniqKey="Zhao G" first="Guangshan" last="Zhao">Guangshan Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui</wicri:regionArea>
<wicri:noRegion>Anhui</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Ximing" sort="Wu, Ximing" uniqKey="Wu X" first="Ximing" last="Wu">Ximing Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui</wicri:regionArea>
<wicri:noRegion>Anhui</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Pingping" sort="Chen, Pingping" uniqKey="Chen P" first="Pingping" last="Chen">Pingping Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui</wicri:regionArea>
<wicri:noRegion>Anhui</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Lingyun" sort="Zhang, Lingyun" uniqKey="Zhang L" first="Lingyun" last="Zhang">Lingyun Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui</wicri:regionArea>
<wicri:noRegion>Anhui</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Chung S" sort="Yang, Chung S" uniqKey="Yang C" first="Chung S" last="Yang">Chung S. Yang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jinsong" sort="Zhang, Jinsong" uniqKey="Zhang J" first="Jinsong" last="Zhang">Jinsong Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China. Electronic address: zjs@ahau.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui</wicri:regionArea>
<wicri:noRegion>Anhui</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30056082</idno>
<idno type="pmid">30056082</idno>
<idno type="doi">10.1016/j.freeradbiomed.2018.07.017</idno>
<idno type="wicri:Area/Main/Corpus">000225</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000225</idno>
<idno type="wicri:Area/Main/Curation">000225</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000225</idno>
<idno type="wicri:Area/Main/Exploration">000225</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects.</title>
<author>
<name sortKey="Zhao, Guangshan" sort="Zhao, Guangshan" uniqKey="Zhao G" first="Guangshan" last="Zhao">Guangshan Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui</wicri:regionArea>
<wicri:noRegion>Anhui</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Ximing" sort="Wu, Ximing" uniqKey="Wu X" first="Ximing" last="Wu">Ximing Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui</wicri:regionArea>
<wicri:noRegion>Anhui</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Pingping" sort="Chen, Pingping" uniqKey="Chen P" first="Pingping" last="Chen">Pingping Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui</wicri:regionArea>
<wicri:noRegion>Anhui</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Lingyun" sort="Zhang, Lingyun" uniqKey="Zhang L" first="Lingyun" last="Zhang">Lingyun Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui</wicri:regionArea>
<wicri:noRegion>Anhui</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Chung S" sort="Yang, Chung S" uniqKey="Yang C" first="Chung S" last="Yang">Chung S. Yang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jinsong" sort="Zhang, Jinsong" uniqKey="Zhang J" first="Jinsong" last="Zhang">Jinsong Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China. Electronic address: zjs@ahau.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui</wicri:regionArea>
<wicri:noRegion>Anhui</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Free radical biology & medicine</title>
<idno type="eISSN">1873-4596</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cell Line, Tumor (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Metal Nanoparticles (administration & dosage)</term>
<term>Metal Nanoparticles (adverse effects)</term>
<term>Mice (MeSH)</term>
<term>Neoplasms (drug therapy)</term>
<term>Neoplasms (pathology)</term>
<term>Oxidation-Reduction (drug effects)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Selenium (administration & dosage)</term>
<term>Selenium (adverse effects)</term>
<term>Sodium Selenite (administration & dosage)</term>
<term>Sodium Selenite (adverse effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Lignée cellulaire tumorale (MeSH)</term>
<term>Nanoparticules métalliques (administration et posologie)</term>
<term>Nanoparticules métalliques (effets indésirables)</term>
<term>Oxydoréduction (effets des médicaments et des substances chimiques)</term>
<term>Souris (MeSH)</term>
<term>Sélénite de sodium (administration et posologie)</term>
<term>Sélénite de sodium (effets indésirables)</term>
<term>Sélénium (administration et posologie)</term>
<term>Sélénium (effets indésirables)</term>
<term>Tumeurs (anatomopathologie)</term>
<term>Tumeurs (traitement médicamenteux)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Selenium</term>
<term>Sodium Selenite</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="adverse effects" xml:lang="en">
<term>Selenium</term>
<term>Sodium Selenite</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="administration & dosage" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="administration et posologie" xml:lang="fr">
<term>Nanoparticules métalliques</term>
<term>Sélénite de sodium</term>
<term>Sélénium</term>
</keywords>
<keywords scheme="MESH" qualifier="adverse effects" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Tumeurs</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Oxydoréduction</term>
</keywords>
<keywords scheme="MESH" qualifier="effets indésirables" xml:lang="fr">
<term>Nanoparticules métalliques</term>
<term>Sélénite de sodium</term>
<term>Sélénium</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Espèces réactives de l'oxygène</term>
<term>Glutathion</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Tumeurs</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line, Tumor</term>
<term>Humans</term>
<term>Mice</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Lignée cellulaire tumorale</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have previously demonstrated that selenium nanoparticles (SeNPs) administered via oral route possess similar capacities of increasing selenoenzyme activities as the extensively examined sodium selenite, selenomethionine and methylselenocysteine, and yet display the lowest toxicity among these selenium compounds in mouse models. However, the low toxicity of SeNPs found in mammalian systems would lead to the interpretation that the punctate distribution of elemental selenium found in cultured cancer cells subjected to selenite treatment that triggers marked cytotoxicity represents a detoxifying mechanism. The present study found that SeNPs could be reduced by the thioredoxin- or glutaredoxin-coupled glutathione system to generate ROS. Importantly, ROS production by SeNPs in these systems was more efficient than by selenite, which has been recognized as the most redox-active selenium compound for ROS production. This is because multiple steps of reduction from selenite to selenide anion are required; whereas only a single step reduction from the elemental selenium atom to selenide anion is needed to trigger redox cycling with oxygen to produce ROS. We thus speculated that accumulation of SeNPs in cancer cells would result in a strong therapeutic effect, rather than serves a detoxification function. Indeed, we showed herein that preformed SeNPs generated a potent therapeutic effect in a mouse model due to rapid, massive and selective accumulation of SeNPs in cancer cells. Overall, for the first time, we demonstrate that SeNPs have a stronger pro-oxidant property than selenite and hyper-accumulation of SeNPs in cancer cells can generate potent therapeutic effects.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30056082</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-4596</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>126</Volume>
<PubDate>
<Year>2018</Year>
<Month>10</Month>
</PubDate>
</JournalIssue>
<Title>Free radical biology & medicine</Title>
<ISOAbbreviation>Free Radic Biol Med</ISOAbbreviation>
</Journal>
<ArticleTitle>Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects.</ArticleTitle>
<Pagination>
<MedlinePgn>55-66</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0891-5849(18)30939-0</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.freeradbiomed.2018.07.017</ELocationID>
<Abstract>
<AbstractText>We have previously demonstrated that selenium nanoparticles (SeNPs) administered via oral route possess similar capacities of increasing selenoenzyme activities as the extensively examined sodium selenite, selenomethionine and methylselenocysteine, and yet display the lowest toxicity among these selenium compounds in mouse models. However, the low toxicity of SeNPs found in mammalian systems would lead to the interpretation that the punctate distribution of elemental selenium found in cultured cancer cells subjected to selenite treatment that triggers marked cytotoxicity represents a detoxifying mechanism. The present study found that SeNPs could be reduced by the thioredoxin- or glutaredoxin-coupled glutathione system to generate ROS. Importantly, ROS production by SeNPs in these systems was more efficient than by selenite, which has been recognized as the most redox-active selenium compound for ROS production. This is because multiple steps of reduction from selenite to selenide anion are required; whereas only a single step reduction from the elemental selenium atom to selenide anion is needed to trigger redox cycling with oxygen to produce ROS. We thus speculated that accumulation of SeNPs in cancer cells would result in a strong therapeutic effect, rather than serves a detoxification function. Indeed, we showed herein that preformed SeNPs generated a potent therapeutic effect in a mouse model due to rapid, massive and selective accumulation of SeNPs in cancer cells. Overall, for the first time, we demonstrate that SeNPs have a stronger pro-oxidant property than selenite and hyper-accumulation of SeNPs in cancer cells can generate potent therapeutic effects.</AbstractText>
<CopyrightInformation>Copyright © 2018 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Guangshan</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Ximing</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Pingping</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Lingyun</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Chung S</ForeName>
<Initials>CS</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jinsong</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China. Electronic address: zjs@ahau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>07</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Free Radic Biol Med</MedlineTA>
<NlmUniqueID>8709159</NlmUniqueID>
<ISSNLinking>0891-5849</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>H6241UJ22B</RegistryNumber>
<NameOfSubstance UI="D012643">Selenium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>HIW548RQ3W</RegistryNumber>
<NameOfSubstance UI="D018038">Sodium Selenite</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="Y">administration & dosage</QualifierName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009369" MajorTopicYN="N">Neoplasms</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012643" MajorTopicYN="N">Selenium</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="Y">administration & dosage</QualifierName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018038" MajorTopicYN="N">Sodium Selenite</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="Y">administration & dosage</QualifierName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Cancer therapy</Keyword>
<Keyword MajorTopicYN="Y">Glutathione system</Keyword>
<Keyword MajorTopicYN="Y">Reactive oxygen species</Keyword>
<Keyword MajorTopicYN="Y">Selenium nanoparticles</Keyword>
<Keyword MajorTopicYN="Y">Thioredoxin system</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>07</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>07</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30056082</ArticleId>
<ArticleId IdType="pii">S0891-5849(18)30939-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.freeradbiomed.2018.07.017</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhao, Guangshan" sort="Zhao, Guangshan" uniqKey="Zhao G" first="Guangshan" last="Zhao">Guangshan Zhao</name>
</noRegion>
<name sortKey="Chen, Pingping" sort="Chen, Pingping" uniqKey="Chen P" first="Pingping" last="Chen">Pingping Chen</name>
<name sortKey="Wu, Ximing" sort="Wu, Ximing" uniqKey="Wu X" first="Ximing" last="Wu">Ximing Wu</name>
<name sortKey="Zhang, Jinsong" sort="Zhang, Jinsong" uniqKey="Zhang J" first="Jinsong" last="Zhang">Jinsong Zhang</name>
<name sortKey="Zhang, Lingyun" sort="Zhang, Lingyun" uniqKey="Zhang L" first="Lingyun" last="Zhang">Lingyun Zhang</name>
</country>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Yang, Chung S" sort="Yang, Chung S" uniqKey="Yang C" first="Chung S" last="Yang">Chung S. Yang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000216 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000216 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30056082
   |texte=   Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30056082" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020